C.U.SHAH UNIVERSITY

Summer Examination-2017

Subject Name: Engineering Mathematics-II

Subject Code: 4TE02EMT2 Branch: B.Tech (All)

Semester: 2 Time: 02:00 To 05:00 Marks: 70 Date :04/05/2017

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q.1 Attempt the following questions:

(14)

a)
$$\int_{0}^{\frac{\pi}{2}} \cos^{7}\theta \, d\theta =$$
(a) 0 (b) $\frac{16}{35}$ (c) $\frac{32}{35}$ (d) $\frac{8\pi}{35}$.

b) If
$$f_n = \int_0^{\frac{\pi}{4}} \tan^n \theta \, d\theta$$
 then $f_n + f_{n-2} = \underline{\qquad}$.

- $\frac{1}{\text{(a)}} \frac{1}{n} \qquad \frac{1}{(b)} \frac{n}{n-1} \qquad \frac{n-1}{(c)} \frac{n-1}{n}$

- c) State the Euler's formula.
- d) $\Gamma(4.5) =$ _____. (a) $4.5 \Gamma(3.5)$ (b) $3.5 \Gamma(4)$ (c) $4 \Gamma(3.5)$ (d) none of these.

e)
$$\beta\left(\frac{1}{2},\frac{1}{2}\right) = \underline{\qquad}$$

- (a) $\sqrt{\pi}$ (b) $\frac{1}{2}$ (c) 1 (d) π .

- **f**) Define a complete elliptical integral of 1st kind.
- **g**) $erf(x) + erf_c(x) =$ _____.

- (a) 0 (b) 1 (c) 2 (d) none of these.
- **h)** The curve $y^2 (2a x) = x^3$ is symmetrical about _____.

- (a) X-axis (b) Y-axis (c) origin (d) line y = x.
- i) The length of the spiral $r = e^{\theta}/\sqrt{2}$, $0 \le \theta \le \pi$, is _____. (a) e^{π} (b) $e^{\pi} + 1$ (c) $e^{\pi} 1$ (d) 1. j) $\int_{0}^{\pi} \int_{0}^{x} x \sin y \, dy \, dx$ $= \underline{\qquad}$ (a) $\pi/2$ (b) $\pi^{2}/2$ (c) $(\pi/2) + 1$ (d) $(\pi^{2}/2) + 1$.

$$\mathbf{j}) \quad \int_0^\pi \int_0^x x \sin y \, dy \, dx$$

k)
$$\int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) \, dz \, dy \, dx = \underline{\qquad}.$$
(a) 1 (b) -1 (c) 0 (d) none of thes

- (a) 1

- (d) none of these.

1) The series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}$$
 is _____

- (a) convergent
- (b) divergent (c) conditionally convergent
- (d) none of these.
- m) The series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

is divergent if _____. > 1 (b) $p \le 1$ (c) $p \ge 1$ (d) p < 1.

- (a) p > 1

- **n**) The differential equation (x + y) dy + (x y) dx = 0 is _____ differential equation.

Attempt any four questions from Q-2 to Q-8

Q.2 Attempt all questions

(14)(02)

- a) Evaluate: $\int_0^{\pi} (1 + \cos \theta)^4 d\theta$
- **b**) Evaluate:

(02)

$$\int_0^{\frac{1}{2}} x^3 \sqrt{1 - 4x^2} \ dx$$

c) Evaluate:

$$\int_0^1\!\frac{x^6}{(1+x^2)}\;dx$$

d) Trace the curve $x^3 + y^3 = 3axy$.

(06)

(04)

Q.3 Attempt all questions

(14)

a) If $\beta(n, 3) = 1/105$ and n is a positive integer, then find n.

(02)

b) Prove that: (i) $n\beta(m+1, n) = m\beta(m, n+1)$; and

(04)

- (ii) $\beta(m, n) = \beta(m, n + 1) + \beta(m + 1, n)$.
- **c)** Evaluate:

(04)

$$\int_{-\infty}^{\infty} e^{-k^2 x^2} \ dx$$

d) Prove that:

$$\int_0^\infty \frac{x^4}{4^x} \, dx = \frac{24}{(\log 4)^5}$$

Q.4 Attempt all questions

(14)

a) Prove that:

$$\int_0^\infty \frac{\sqrt{x}}{x^2 + 2x + 1} \, dx = \frac{\pi}{2} \tag{03}$$

b) Evaluate:

$$\int_0^{\frac{\pi}{3}} \frac{d\theta}{\sqrt{3 - 4\sin^2\theta}} \tag{03}$$

- c) If the perimeter of the ellipse of $e = 1/\sqrt{2}$ is equal to twice the length of one arch of the curve $y = \sin x$, then find the area of the ellipse. (04)
- d) (1) Show that erf(x) is an odd function; and (04) (2) prove that: $\int_{-\pi}^{a} e^{-t^{2}} dt = \sqrt{\pi} \operatorname{erf}(a)$

Q.5 Attempt all questions

(14) (04)

a) Trace the curve $r^2 = a^2 \cos 2\theta$.

b) Find the length of the Cardioid $r = 1 + \cos \theta$.

- (02)
- c) Find the area of the smaller region lying above X-axis and bounded by the circle $x^2 + y^2 = 2x$ and the parabola $y^2 = x$.
- (04)
- d) Find volume of the solid generated by revolving the lemniscate $r^2 = a^2 \cos 2\theta$ about the line $\theta = \pi/2$.

Q.6 Attempt all questions

(14)

(04)

a) Evaluate:

$$\iint (x^2 + y^2) dA$$
, where R is a triangular region with vertices $(0, 0)$, $(0, 1)$ and $(1, 0)$.

- b) Evaluate: $\int_0^1 \int_y^1 x^2 e^{xy} dxdy$ (03)
- c) Evaluate: $\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} ln(x^2 + y^2 + 1) dxdy$
- d) Find the volume of the region D between the cylinder $z = y^2$, and the XY-plane that is bounded by the planes x = 0, x = 1, y = -1, y = 1.
- e) Evaluate: $\int_0^1 \int_{\frac{\pi}{2}\sqrt{z}}^1 \int_0^{\ln 3} \frac{\pi e^{2x} \sin(\pi y^2)}{y^2} dx dy dz$ (03)

Q.7 Attempt all questions

(14)

a) Discuss convergence/divergence of the following series:

$$i) \sum_{n=1}^{\infty} \frac{2n+1}{n^{2}(n+1)^{2}} \quad ii) \sum_{n=1}^{\infty} \frac{1}{2\sqrt{n}+\sqrt[3]{n}} \quad iii) \sum_{n=1}^{\infty} \frac{n^{10}}{10^{n}} \quad iv) \sum_{n=1}^{\infty} (-1)^{n} \ln\left(1+\frac{1}{n}\right)$$
 (08)

b) Prove that if the series $\sum a_n$ converges, then (02)

 $\lim_{n\to\infty}a_n=0$

Find the values of x for which the following power series converges. (04)

c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n}$$

Q.8 Solve the following ordinary differential equations:

a)
$$(x - y)dx - (x + y)dy = 0$$
 (03)

b)
$$(y-x^3)dx + (x+y^3)dy = 0$$
 (03)

c)
$$(1 + x^2)dy + 2xy dx = \cot x dx$$
 (04)

d)
$$2yy'' = 1 + (y')^2$$

